Environmental footprint of bio-refineries feeding with olive biomass residues and wastes

Carmen LAGO*, Israel HERRERA, Daniel GARRAÍN, Yolanda LECHÓN

Introduction

Bio refineries producing bioproducts and bioenergy together contribute to more efficient use of biomass resources and increase the sustainability of the processes. The aim of the study is to analyse the environmental impacts of two bio refineries and compare to those produced by conventional systems obtaining the same co-products, verifying the emission savings generated by the introduction of the circular economy and bioeconomy concepts. The first bio refinery approach is based in the use of biomass residues from olive tree pruning (OTP), and the other is going to use extracted olive pomace (EOP) from secondary extraction factories (olive pomace mills).

Materials & Methods

The environmental sustainability of two schemes of bio refineries is assessed applying the LCA approach by means of the Environmental Footprint (EF, ILCD impact categories [1]). The functional unit has been defined as the total amount of feedstock feeding the refinery (OTP and EOP respectively). The performance of the processes has been simulated by Aspen-Plus model on the basis of bench-scale experimental data and complementary literature data.

Land use management changes using OTP in bio-refinery instead of leaving on field as inert soil coverage have been taking into account [2-3]. OTP distance transport is 15 km. EOP is considered free of previous environmental burdens.

The total energy consumed in the plants are provided by the own feedstocks. Reference systems has been defined considering the commercial existing products available in the market, which are going to be substituted by output produced in bio refineries. The counterparts are: gas, bioethanol, hydroquinone, antioxidants, sugarcane molasses - bio refinery sugars, soy based polyol - xylitol and electricity from Spanish biomass electricity.

Life Cycle Inventory (LCI) is described in tables 1 and 2.

Results & Discussion

The environmental profile of both facilities exhibits better behaviour in most of the impact categories (Figure 1). Climate change shows significant emission savings: 51% in case of OTP and 95% in EOP. Most of the impact of OTP comes from the avoided carbon sequestration as consequence of not leaving the pruning as cover crops. Emissions savings by impact categories are shown in Figure 2. OTP saves 95% of non renewable energy, while EOP reaches 96% of reduction (Figure 3).

Conclusions

Bio refineries using biological biomass residues present environmental advantages in comparison to reference systems in most of the impact categories. Climate change mitigation is one of the main reasons to promote bio refineries implementation in rural areas taking advantage of both, biomass residues and wastes from agro-food industries. The transition to a low carbon economy in rural areas can be made through bio refineries deployment, among other possible pathways.

At the same time, bio refineries development can contribute to reduce country energy dependence, increasing energy security, as their energy needs are supplied with renewable energy and allow fossil energy consumption savings of around 95% compared to reference systems.

References


Acknowledgements

The authors wish to thank the Ministry of Economy and Competitiveness of Spain for financing this research project within “Design and assessment of a sustainable bio refinery based on olive residues from olive oil and bio-industry technics and ecological assessment” (BIOROLSOS), under the National Plan R+D “Research Challenges” 2015-2017.